Social Share
featured

Data Science & Machine Learning

3 Curriculum
( 2 Reviews )

Introduction to Data Science

  • Lesson 1. What is Data Science?
  • Lesson 2. Need of Data Science
  • Lesson 3. Applications of Data Science
  • Lesson 4. Libraries used in Data Science

NumPy Library

  • Lesson 1. Introduction to NumPy Library
  • Lesson 2. Creating NumPy Arrays
  • Lesson 3. Numpy Array Indexing
  • Lesson 4. Numpy Array Slicing
  • Lesson 4. Numpy Array Operations

Pandas Library

  • Lesson 1. Introduction to Pandas Library
  • Lesson 2. Creating Series
  • Lesson 3. Accessing Series
  • Lesson 4. Creating DataFrames
  • Lesson 5. Accessing DataFrames
  • Lesson 6. Adding and Removing Rows in DataFrame
  • Lesson 7. Adding and Removing Columns in DataFrame
  • Lesson 8. Working with Missing Values in DataFrame
  • Lesson 9. Iterating elements of DataFrame
  • Lesson 10. Descriptive statistics in DataFrame
  • Lesson 11. Creating DataFrame from CSV file
  • Lesson 12. Writing DataFrame data into a CSV file

Matplotlib Library

  • Lesson 1. Matplotlib Library
  • Lesson 2. Introduction to Matplotlib Library
  • Lesson 3. Creating a Line Plot
  • Lesson 4. Formatting a Line Plot
  • Lesson 5. Creating a Bar Plot
  • Lesson 6. Formatting a Bar Plot
  • Lesson 7. Creating a Scatter Plot
  • Lesson 8. Formatting a Scatter Plot
  • Lesson 9. Creating a Histogram Plot
  • Lesson 10. Formatting a Histogram Plot
  • Lesson 11. Creating a Box Plot
  • Lesson 12. Formatting a Box Plot
  • Lesson 13. Creating a Pie Plot
  • Lesson 14. Formatting a Pie Plot

Seaborn Library

  • Lesson 1. Introduction to Seaborn Library
  • Lesson 2. Distribution Plots
  • Lesson 3. Categorical Plots
  • Lesson 4. Matrix Plots
  • Lesson 5. Grids
  • Lesson 6. Regression Plots
  • Lesson 7. Styling and Coloring Plots

Introduction to Machine Learning

  • Lesson 1. What is Machine Learning?
  • Lesson 2. Need of Machine Learning
  • Lesson 3. History of Machine Learning
  • Lesson 4. Applications of Machine Learning
  • Lesson 5. Libraries used in Machine Learning
  • Lesson 6. Types of Machine Learning Algorithm

Supervised Machine Learning Algorithms & Linear Regression Algorithm

  • Lesson 1. Linear Regression Algorithm Concept
  • Lesson 2. Linear Regression Algorithm Program Implementation

Logistic Regression Algorithm

  • Lesson 1. Logistic Regression Algorithm Concept
  • Lesson 2. Logistic Regression Algorithm Program Implementation

KNN Algorithm

  • Lesson 1. KNN Algorithm Concept
  • Lesson 2. KNN Algorithm Program Implementation

Naive Bayes Algorithm

  • Lesson 1. Naive Bayes Algorithm Concept
  • Lesson 2. Naive Bayes Algorithm Implementation

Decision Tree Algorithm

  • Lesson 1. Decision Tree Algorithm Concept
  • Lesson 2. Decision Tree Algorithm Program Implementation

Random Forest Algorithm

  • Lesson 1. Random Forest Algorithm Concept
  • Lesson 2. Random Forest Algorithm Program Implementation

Support Vector Machine Algorithm

  • Lesson 1. Support Vector Algorithm Concept
  • Lesson 2. Support Vector Algorithm Program Implementation

Unsupervised Machine Learning Algorithms

  • Lesson 1. K-Means Algorithm
  • Lesson 2. K-Means Algorithm Concept
  • Lesson 3. K-Means Algorithm Program Implementation

Advance Concept - ANN Algorithm

  • Lesson 1. ANN Algorithm Concept
  • Lesson 2. ANN Algorithm Program Implementation

Data Science Introduction

Data science is a 'concept to unify statistics, data analysis, informatics, and their related methods' to 'understand and analyze actual phenomena' with data.

Why Learn Data Science

We learn data science to understand information, make smart choices, and solve tricky problems. It involves studying data using statistics, computers, and machine learning to gain valuable insights and knowledge.

Review

Average Rating
4
Details
  • 1 Star
    0
  • 2 Star
    0
  • 3 Star
    0
  • 4 Star
    2
  • 1 Star
    0

Comments ( 2 )

  • Ram MNovember 1, 2017

    Cras porttitor sed diam
    Vestibulum a mauris orci. Sed eros enim, euismod at eros ac, vestibulum volutpat tortor. Suspendisse neque dui, rutrum congue ligula ut, semper pulvinar diam.


  • Andre DubusNovember 1, 2017

    Maecenas euismod mi ac risus faucibus
    Suspendisse vitae iaculis purus, non malesuada odio. Nunc nec interdum est, vel porta lacus. Praesent leo magna, lacinia non arcu eget, pulvinar tristique sapien. Etiam eget urna eget magna sollicitudin molestie. Praesent vitae libero ligula. Suspendisse ut tortor nulla. Nunc a bibendum nibh. Etiam ornare scelerisque velit sed egestas.

  • Ram MNovember 1, 2017

    Cras porttitor sed diam
    Vestibulum a mauris orci. Sed eros enim, euismod at eros ac, vestibulum volutpat tortor. Suspendisse neque dui, rutrum congue ligula ut, semper pulvinar diam.